

© 2014 Seeed Technology Inc. MB_2014_D02

1

MeshBee®

Open Source ZigBee RF Module

 CookBook

© 2014 Seeed Technology Inc.

www.seeedstudio.com

© 2014 Seeed Technology Inc. MB_2014_D02

2

Doc Version Date Author Remark

v0.1 2014/05/07 Created

Table of contents

© 2014 Seeed Technology Inc. MB_2014_D02

3

Table of contents

Chapter 1: Getting Started ... 4

1.0 Introduction ... 4

1.1 Installing IDE ... 5

1.2 Setting up the MeshBee .. 8

1.3 Upgrade firmware ... 10

1.4 Setting up the network ... 11

Chapter 2: Example of Mode Operation ... 13

2.1 AT mode .. 13

Additional Documentation ... 14

2.2 API Mode .. 15

Remote led blink example ... 15

Sending Data packets example .. 18

2.3 MCU Mode ... 21

Mechanism ... 21

Additional documentation: .. 23

Blink example in AUPS ... 23

2.4 Data Mode .. 24

Chat example ... 24

Introduction

© 2014 Seeed Technology Inc. MB_2014_D02

4

Chapter 1: Getting Started

1.0 Introduction

MeshBee
®
 is a 2.4 GHz wireless zigbee RF module. It use microchip JN516x from NXP that

enables several different flvors of standards-based zigbee mesh networking. Our released firmware

fully supports Zigbee Pro stack. You can use MeshBee
®
 in three different ways:

Master Mode: the factory firmware warps the complicated Zigbee stack operation into a few

easy to use serial commands(AT commands).

Slave Mode: for a complex mesh network, a host application can send API frames to the

MeshBee
®
 that contain short address and payload information instead of using AT command.

Transparent Mode: MeshBee
®
 can also work as a transparent serial communication node that

can be part of a simple point-to-point connection. When operating in this mode, the modules act as a

serial line replacement - all UART data received through UART1 is directly send to a specified

remote node.

Installing IDE

© 2014 Seeed Technology Inc. MB_2014_D02

5

1.1 Installing IDE

NXP provides full-scale development environment, tools and documents. The development

environment consists of the SDK toolchain and the ZigBee stack SDK. Please visit NXP's website to

get some detailed description: http://www.nxp.com/techzones/wireless-connectivity/smart-energy.html

To create the development environment, perform these steps:

1) Install JN-SW-4041 SDK Toolchain to default disk: C:/

2) Install JN-SW-4064 ZigBee Smart Energy SDK to default disk: C:/

Note: MeshBee’s factory firmware is developed on top of the

smart energy profile.

http://www.nxp.com/techzones/wireless-connectivity/smart-energy.html

Installing IDE

© 2014 Seeed Technology Inc. MB_2014_D02

6

When finished the installing, you can test the tool chain if you are not sure whether it is

successful or not. Perform these steps:

1) Clone the latest firmware source code from github.

2) Copy the source code folder to C:/Jennic/Application/.

3) Open Jennic Bash Shell.

4) Type these shell commands:

cd MeshBeeMasterBranch

cd build

./build.sh

 If three binary files are generated successfully, congratulations, you have finished all the

Note: The developing toolchain supports windows only. For

Linux and Mac users, a windows VM is recommended.

Installing IDE

© 2014 Seeed Technology Inc. MB_2014_D02

7

preparation work.

 Open eclipse IDE and import the project, you can catch a glimpse of the firmware:

Setting up the MeshBee

© 2014 Seeed Technology Inc. MB_2014_D02

8

1.2 Setting up the MeshBee

To assemble your experimental environment, perform the following steps:

1) Step1: Insert MeshBee into the socket of UartBeeV5;

2) Step2: Connecting UartBeeV5 with PC by USB port;

Setting up the MeshBee

© 2014 Seeed Technology Inc. MB_2014_D02

9

Note: Switch the SW to “3V3” and SW3 to “Prog” position at

first.

Upgrade firmware

© 2014 Seeed Technology Inc. MB_2014_D02

10

1.3 Upgrade firmware

 A wireless network comprises a set of nodes that can communicate with each other

by means of radio transmissions according to a set of routing rules (for passing messages between

nodes). ZigBee network includes three types of node:

1) Coordinator: This is the first node to be started and is responsible for forming the network by

allowing other node to join the network through it.

2) Router: This is the node with routing capability, and is also able to send/receive data.

3) End device: Only capability to send/receive data.

Different device role should burn different image. Burn the latest firmware using JN51xx Flash

Programmer. Four steps are required as below:

Setting up the network

© 2014 Seeed Technology Inc. MB_2014_D02

11

1.4 Setting up the network

Zigbee network lifecycle

Normally, MeshBee will form the Network automatically. If a router or end device failed to join

network, you can use command “ATRS” to rescan and perform network actions again.

Setting up the network

© 2014 Seeed Technology Inc. MB_2014_D02

12

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

13

Chapter 2: Example of Mode Operation

MeshBee has four different types of mode: AT, API, DATA, MCU, illustrated in figure below:

No matter which mode MeshBee works in, input “+++” can go back to AT command mode.

2.1 AT mode

The AT commands that MeshBee radios use for interactive are a descendant of hayes command

set. Every AT command starts with “AT”, and followed by two characters that indicate which

command is being executed, then by some optional configuration values.

To communicate with MeshBee from Win7, we will use SecureCRT. In CoolTerm on a Mac,

the procedure works pretty much the same.

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

14

Use AT commands is very easy. Here are the steps:

1) Input “+++” to go to AT command mode.

2) Wait for a MeshBee “ok” response.

3) To read a register, just typing an AT command.

4) To set a register, type an AT command followed by the register value.

AT command contain three different types:

Additional Documentation

For more information about the AT command operations, please refer to the MeshBee User’s

manual v0.1.

Note: The baud-rate must be set to 115200 in SecureCRT.

Make sure MeshBee works in AT mode.

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

15

2.2 API Mode

API is simply a set of standard interfaces created to allow other MCU to interact with MeshBee.

For our purposes, API supports local operation and remote operation. For example, a host application

can send an “ATIO” frame to Coordinator A, A will set its GPIO when it receives this frame. The

most important thing to note is that APIs are specifically engineered to enable MeshBee to talk

efficiently to other MCU. The target of API-mode is to transmit highly structured data quickly and

reliably.

Remote led blink example

Sending commands over the wireless network to control the remote device is kind of

exhilarating, it is something you can accomplish in API mode.

Some kinds of AT commands can also be sent wirelessly for execution on remote device. Here,

we implement a remote IO control demo.

Hardware list:

Arduino X1

MeshBee X2

XBee shield X1

UartBeeV5 X1

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

16

Install hardware like that:

1) Connect Arduino with MeshBee’s Coordinator through UART.

2) Connect MeshBee’s Router with UartBeeV5.

Arduino sketch:

/*

 Remote LED control sketch

 Send remote AT request frame to Coordinator(short address is 0x0000)

 Router should enter API mode at first

 On/Sleep Led on remote device will blink

*/

#include <Arduino.h>

#include <Serial.h>

/* LED Pin */

int led = 13;

/* declaration */

void remoteATIO_Off();

void remoteATIO_On();

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

17

void setup() {

 pinMode(led, OUTPUT);

/* open the serial port at 115200 bps */

 Serial.begin(115200);

}

void loop() {

 remoteATIO_On();

 digitalWrite(led, LOW);

 delay(500);

 remoteATIO_Off();

 digitalWrite(led, HIGH);

 delay(500);

}

/* Turn off remote Led */

void remoteATIO_Off()

{

 Serial.write(0x7e); //start delimiter

 Serial.write(0x0d); //length

 Serial.write(0x17); //API identifier: remote AT require

 Serial.write(0xec); //frame ID

 Serial.write(0x00); //option

 Serial.write(0x70); //AT cmd index

 Serial.write(0x09); //IO pin No

 Serial.write(0x00); //State: Off

 Serial.write(0x00); //none

 Serial.write(0x00); //none

 Serial.write(0x00); //none

 Serial.write(0x00); //none

 Serial.write(0x00); //none

 Serial.write(0x00); //none

 Serial.write(0xc6); //unicast address low

 Serial.write(0x71); //unicast address high

 Serial.write(0x9c); //check sum: payload byte[4-16]

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

18

}

/* Turn on remote Led */

void remoteATIO_On()

{

 Serial.write(0x7e);

 Serial.write(0x0d);

 Serial.write(0x17);

 Serial.write(0xec);

 Serial.write(0x00);

 Serial.write(0x70);

 Serial.write(0x09);

 Serial.write(0x01); //State: On

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x9d);

}

Sending Data packets example

Now that you may understand how API mode works. It’s pretty simple to write your own MCU

code to work with API mode.

Sometimes, you want to send some data packet in your protocol. For example, in many sensor

network applications, the data samples are a series of data set, like:

typedef struct

{

uint8 verifyByte; //verify, avoiding mistakes when take serial transmission

uint8 dataType; // maybe temperature or humility

uint16 dataPointCnt; // number of data point

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

19

int16 datapoint[DATA_POINT_NUM]; //a series of data points

}tsDataStream;

API data packet can meet your demands.

Arduino sketch:

/*

 Sending data packet demo

 Coordinator will receive “seeed” in its uart.

*/

#include <Arduino.h>

#include <Serial.h>

/* LED Pin */

int led = 13;

/* declaration */

void sendDataPacket();

void setup() {

 pinMode(led, OUTPUT);

 Serial.begin(115200); // open the serial port at 115200 bps:

}

void loop() {

sendDataPacket();;

 digitalWrite(led, LOW);

 delay(500);

 sendDataPacket();

 digitalWrite(led, HIGH);

 delay(500);

}

/* Send data packet */

void sendDataPacket()

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

20

{

 Serial.write(0x7e); //start delimiter

 Serial.write(0x19); //length

 Serial.write(0x02); //Api identifier API_DATA_PACKET

 Serial.write(0xec); //frameId, any number

 Serial.write(0x00); //option 0x00 indicate NO-ACK

 Serial.write(0x06); //data length: 2 byte

 /* Has 20 bytes to hold your data */

 Serial.write(0x73); // data[0] = 's'

 Serial.write(0x65); // data[1] = 'e'

 Serial.write(0x65); // data[2] = 'e'

 Serial.write(0x65); // data[3] = 'e'

 Serial.write(0x64); // data[4] = 'd'

 Serial.write(0x00); // none

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00);

 Serial.write(0x00); // unicast address Low, we send to 0x0000(Coordinator)

 Serial.write(0x00); // unicast address High

 Serial.write(0xf8); // checkSum: sum of payload

}

In order to taking advantage of the API mode, a software library written by C was developed.

This library presents the internal information in a human-friendly format. You can package the API

frame by functions it provides.

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

21

2.3 MCU Mode

In order to simplify the development of application for user, we create an Arduino-ful user

programming space(AUPS). The most important thing to note is AUPS is not a real Arduino because

it doesn’t support Arduino-IDE. We only present two Arduino style functions:

/* arduino setup */

void arduino_setup(void)

{

 /**/

}

/*arduino loop*/

void arduino_loop(void)

{

/**/

}

Mechanism

Experienced C/C++ programmers may wonder where the program’s main() entry point function

has gone. It’s there, but it’s hidden under the covers by a task of JenOS.

A task called “Arduino_Loop” was running on background. There are several other tasks created

on MeshBee too. So Arduino_Loop should release CPU periodically to let other task use it.

A software timer was created to activate Arduino_Loop. You must set repeat time in

arduino_setup() by calling setLoopIntervalMs at first. The repeat time is similar to crystal oscillator

frequency of Arduino.

void ups_init(void)

{

 /* Init ringbuffer */

 UPS_vInitRingbuffer();

 //init suli

 suli_init();

 //init arduino sketch with arduino-style setup function

 arduino_setup();

 //start arduino loops, Arduino_LoopTimer is bound with Arduino_Loop task

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

22

 OS_eStartSWTimer(Arduino_LoopTimer, APP_TIME_MS(1), NULL);

}

OS_TASK(Arduino_Loop)

{

 if(E_MODE_MCU == g_sDevice.eMode)

 {

 /* Back-Ground to search AT delimiter */

 uint8 tmp[AUPS_UART_RB_LEN];

 uint8 *Device = NULL;

 uint16 DeviceId = 0;

 uint32 avlb_cnt = suli_uart_readable(Device, DeviceId);

 uint32 min_cnt = MIN(AUPS_UART_RB_LEN, avlb_cnt);

 /* Read,not pop,make sure we don't pollute user data in AUPS ringbuffer */

 vHAL_UartRead(tmp, min_cnt);

 if (searchAtStarter(tmp, min_cnt))

 {

 /* Set AT mode */

 setNodeState(E_MODE_AT);

 suli_uart_printf(Device, DeviceId, "Enter AT Mode.\r\n");

 /* Clear ringbuffer of AUPS */

 OS_eEnterCriticalSection(mutexRxRb);

 clear_ringbuffer(&rb_uart_aups);

 OS_eExitCriticalSection(mutexRxRb);

 }

 else

 {

 arduino_loop();

 }

 }

 if(_loopInterval > 0)

 {

 OS_eStartSWTimer(Arduino_LoopTimer, APP_TIME_MS(_loopInterval), NULL);

 } else

 {

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

23

 OS_eActivateTask(Arduino_Loop);

 }

}

Write your own code in “ups_arduino_sketch.c”, then compile and upload the image to

MeshBee.

In AT mode, using “ATMC” to enter MCU mode.

Additional documentation:

For more information about the function list that AUPS can call, please refer to the MeshBee

User’s manual v0.1.

Blink example in AUPS

/*

 Blink demo in AUPS

 UartBeeV5’s Sleep/On Led will blink

*/

IO_T led_io;

int16 state = HAL_PIN_HIGH;

void arduino_setup(void)

{

 setLoopIntervalMs(1000); //set loop period

 suli_pin_init(&led_io, 9); //init led

 suli_pin_dir(&led_io, HAL_PIN_OUTPUT);

}

void arduino_loop(void)

{

 suli_pin_write(&led_io, state); //set led

 if(state == HAL_PIN_HIGH)

 state = HAL_PIN_LOW;

 else

 state = HAL_PIN_HIGH;

}

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

24

2.4 Data Mode

When operating in Data mode, the modules act as a serial line. All UART data received through

the UART1 is transmitted to a specified remote device.

To use a transparent connection, take the following steps:

1) Set unicast address: ATDAxxx

2) Enter Data Mode: ATDT

Chat example

Coordinator say HI to Router:

Router receives Coordinator’s greeting and reply to it:

Example of Mode Operation

© 2014 Seeed Technology Inc. MB_2014_D02

25

Coordinator receives Router’s reply:

