Loading...
Fusion Marketplace
Groupbuy Program

Open source Arduino blood glucose meter shield

Open hardware and software blood glucose meter using electrochemical test strips

$23.00
4 Bought
10  
Tier Price
10+ : $20
50+ : $18
100+ : $13
200+ : $12
-
+
  • This Groupbuy was created and initiated by Markus Bindhammer, who owns all of the design’s intellectual property rights and is responsible for end-user support.
  • If the Groupbuy meets the target quantity within the allotted timeframe, the Groupbuy is deemed a success, and Seeed will initiate the production and delivery of the goods after payment is made.If the Groupbuy fails Seeed will refund all buyers within 10 working days.
  • Seeed is responsible for providing the sales platform and the production quality of the product.
  • Users may refer to the product page FAQ or the Seeed Forums for support.
Markus Bindhammer
Germany
I am an engineer, mathematician, rocket scientist, manager, hobby chemist, and hacker. I've been doing a lot of work on robotics and artificial intelligence lately. For relaxation, I draw comics

PRODUCT DETAILS

Introduction

Diabetes is a serious disease that affects nearly 400 million people worldwide and is the 8th leading cause of death. Blood glucose meters play a very important role in managing diabetes as they provide the patient with the ability to monitor their blood glucose levels from home and at any time of the day.

The pharmacy provides a large number of blood glucose meters and accompanying test strips. Typically, the patients insert one of the disposable test strips into the meter, prick their finger, load a droplet of blood into the test strip, wait a few seconds and get an instant reading of the current blood glucose level.

The basic principle of operation

Usually, three electrodes are printed into the test strips: a reference electrode, a counter electrode, and a working electrode.

A fixed voltage is applied and the resulting current after the blood is loaded is monitored. The current response is then related to the glucose concentration through calibration. Since test strips may vary from batch to batch, some models require the user to manually enter in a code found on the vial of test strips or on a chip that comes with the test strip.

By entering the coding or chip into the glucose meter, the meter will be calibrated to that batch of test strips. One-Touch, the brand of test strips we will primarily use, has standardized their test strips around a single code number, so that, once set, there is no need to further change the code in their older meters, and in some of their newer meters, there is no way to change the code. Figure 1 shows the One Touch Ultra test strip connections.

                                        Figure 1, One Touch Ultra test strip connections

Typically the electrodes are coated such that an enzymatic chemical reaction occurs at the electrode surface and this reaction dictates the resulting current. The details of the electrochemistry can be quite complex. Since commercial strips are used, the details are somewhat unknown as the companies do not release detailed data about their particular test strips operation. Some devices apparently watch the current after a short initial transient (the current will level out to some degree) and then report the current after a fixed time. Another principle looks at the total amount of a reaction that has occurred and thus integrates the current with respect to time to obtain the total amount of chemical reaction which has occurred. Our glucose meter will make two measurements to determine which relates more strongly to the glucose level: one is the current after a fixed time and the other is the total integrated current.


Part List

1 x Open-source-Arduino-blood-glucose-meter-shield

LEARN AND DOCUMENTS

REVIEWS

Write Your Own Review
Only registered users can write reviews. Please Sign in or create an account

FAQ